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Note 

Determination of Accurate Potential Strengths to Yield Specified 
Eigenvalues of the Radial Schrodinger Equation 

The determination of the number of bound states of a system is important in 
such problems as the existence of a bound state of the helium molecule arising 
from the interaction of two ground state helium atoms [l] and the highest principal 
quantum number likely to be observed in radiation from a plasma [2]. In the 
investigation of this type of problem it is useful to have available a method for 
obtaining the critical strength or coupling constant of a potential for which it 
just binds a specified state, i.e., for evaluating X(Z, u) for a system of reduced 
mass TV such that 

Y; - 
[ g X(Z, u) V(r) + QZ ; “1 Ydr) = 0, (1) 

has a square integrable solution possessing v nodes. This has been termed the 
conjugate eigenvalue problem [3]. 

For fixed h the problem of determining the eigenvalues E of the potential V(r) 
has been extensively studied in atomic physics [4], molecular physics [S], and 
nuclear physics [6], and solutions of high accuracy are easily obtained. It will be 
shown below that these methods can be modified readily to determine coupling 
constants h with comparable facility. Previous methods have involved the determi- 
nation of the number of zeroes of the inverse of the scattering length [7], simply 
counting the number of nodes in the wavefunction [8], the use of extrapolation 
procedures [9], iterative methods [lo] and variational methods [ll, 121. The 
proposed method converges on the critical coupling constant much more readily, 
essentially because it uses further information from the wavefunction in addition 
to the number of nodes it contains. 

The conjugate eigenvalue problem may be considered as a special case of the 
problem of determining the coupling constant h(Z, a, E) which binds a bound 
state of energy E. To avoid having to treat the boundary condition of the zero 
energy problem separately it is convenient to make the Langer transformation 
r = exp@), g&) = r-1/2Yt(r) [13], to the Schrodinger equation for arbitrary 
binding energy, yielding 

gz + I- (z + 5)” - g Nl, us E) W4 - E expCW1~ gdd = 0, (2) 
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where U@) = exp(2p) V[exp(p)], which is to be solved subject to the condition 
gl(- co) = gz(co) = 0. This transformation may also have some computational 
advantages [4]. 

The procedure for obtaining h is as follows. For specified I and E a trial value 
of the coupling constant h, is chosen. Two solutions G,@) and G,@) are now 
obtained such that G,(- co) = G,(co) = 0. At some point p0 , typically the hrst 
maximum occurring in Gz as it is integrated inwards, G,(p) and G,(p) are scaled 
to that G&) = G&J = 1, and their Wronskian, IV(&), is determined. 

The number of nodes in the approximate solution is obtained and if this differs 
from the specified value then h, must be increased or decreased as appropriate. 
In practice, little difficulty is experienced in getting the desired number of nodes. 
At an eigenvalue W(h) = 0 and the process of adjusting the trial value corresponds 
to solving this equation. Newton’s method provides a convenient technique, 
assuming (&V/d&, can be evaluated. This may be obtained by considering the 
equation satisfied by hz(p) = dg,(p)/dh, 

-f$ + I-- (I + k)’ - $$ [AU - E exp(2p)]/ h,(p) - -$- Ug,(p) = 0. (3) 

Multiplying Eq. (3) by gr@) and Eq. (2) by h,(p) and subtracting 

JWob) = G@o> G,‘@o) - G2hJ G’bo) = G,‘@cJ - G’@o), 

so dW/dh = H,‘(p,,) - HI’@,,), w h ere Hi@) = dGi/dA. Integrating Eq. (4) for G1 
and HI from p = - cc to p0 yields 

fG’@o> = $ ,ym U@) G,2(p) dp, 
and similarly, 

H2’W = - $ j-O U@) G22@) dp, 
m 

so 
dW [ 1 2P m - =--- dh ho s tv --m 

WJ) G2W 4, 

where G = G1, p < p. and G = G2, p > p. . The integral may be evaluated 
trivially as the solutions are generated. The whole procedure is analogous to that 
employed by Fox and Mayers [14] for the determination of eigenvalues, except 
that there a different integral to (5) was evaluated, since (dW/dE) was required. 
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The finite difference analog of the Wronskian W(X) and the integral (5) using, 
say, Numerov’s method for the numerical integration of Eq. (2) can be obtained 
similarly to the work of Cooley [15] or Osborne [ 161. As with the determination 
of eigenvalues 4 or 5 iterations are normally sufficient for convergence on a precise 
value of the coupling constant, whose absolute accuracy is determined by the 
range of integration and the step sizes employed. 

A program to obtain coupling constants has been developed from the eigenvalue 
program [5] by means of a few simple alterations, the principal one being the 
evaluation of the integral (5). As a check the coupling constants for the Lennard- 
Jones (LJ) (10,6) potential were obtained. The LJ(m, n) potential is conveniently 
written in reduced units as 

v*(z) = [l/(/n - n)][n/zm - m/z”], m > n. 

In terms of the usual equilibrium separation r, , well depth E and reduced mass p, 
(2,&P) = B = (2prM2 fi2 / ). For the LJ(2n - 2, n) potentials an analytic solution 
exists for all values of the angular momentum at zero energy [17], providing a 
simple check on the program. For 0 < v < 4, 0 < I < 4, errors of a few parts 
in IO7 were achieved for the coupling constants for the LJ(10, 6) potential. As a 
further check with a potential of a different shape, more typical of atomic or 
nuclear potentials, the critical binding strengths for the screened Coulomb potential 
have been evaluated. Excellent agreement was obtained with the values given in [9]. 
The most commonly used Lennard-Jones potential is the (12, 6) and the coupling 
constants B,(N) just required to bind N bound states of angular momentum 1 are 

. given in Table I for 1 < N < 5, and 0 < I < 4. The value obtained for B,(l), 
7.04314, agrees with that obtained by Bruch and McGee, quoted in [18]. Other 
previous values are 7.052 & 0.001, [I], 7.07 f 0.1 [S], 7.047, [ll] and 7.044 [12]. 
The values for v > 1 and I = 0 confirm the less accurate values given in [8]. 

TABLE 1 

Values of the coupling constant B,(N) for the Lennard-Jones (12,6) potential 

“‘\ 1 0 1 2 3 4 
N 

1 7.04314 13.2957 21.4850 31.6095 43.6687 

2 46.6170 61.6499 78.5840 97.4307 118.197 

3 121.286 145.110 170.821 198.430 227.945 

4 231.089 263.700 298.193 334.577 372.857 

5 376.028 417.425 460.702 505.864 552.917 
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In Table II the critical B values are given to bind one s-state for the LJ(m, 6) 
potential for 8 < m < 14. The value for the (9, 6) potential agrees with that 
obtained in [l, 121. 

TABLE II 

Values of the coupling constant B to bind one s-state for the Lennard-Jones 
(m. 6) potential 

m 8 9 10 11 12 13 14 

B 4.83264 5.43341 6.0” 6.53565 7.04314 7.52489 7.98303 

a Exact value. 

It is interesting to compare these exact results with the predictions of the expan- 
sion of the semiclassical formula, valid for small 1, for a LJ(m, 6) potential [19], 

B,(N) = W - % - U41/$(W2, (6) 

where 4(O) has been given explicitly [19] as a function of m. Comparison for the 
(12, 6) potential shows that Eq. (6) becomes less accurate as I increases with a 
maximum error of 6.2 % for B,(l), falling to 0.5 % for B,(5). The inclusion of 
a term in l2 in Eq. (6) [20] yields even better agreement but for larger I values it 
is more accurate to employ the complete semiclassical relationship [19,20]. For 
the critical B values to bind one s-state for the (m, 6) potential the semiclassical 
result, Eq. (6) is never in error by more than 5.4 %. 

This technique for the determination of critical binding strengths, requiring 
almost trivial alterations of standard eigenvalue routines, enables the conjugate 
eigenvalue problem to be solved as easily as the normal one and has been shown 
to yield results of high accuracy for several types of analytic potentials. Its applica- 
tion to potentials whose values are available only at specified points requires the 
provision of a suitable interpolation scheme which would be required in any 
case for the determination of other properties of the potential. 
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